Spectral element approximation of Fredholm integral eigenvalue problems

نویسندگان

  • Saulo P. Oliveira
  • Juarez S. Azevedo
چکیده

The Karhunen-Loève expansion of a Gaussian process, a common tool on finite element methods for differential equations with stochastic coefficients, is based on the spectral decomposition of its covariance function. The eigenpairs of the covariance are expressed as a Fredholm integral equation of second kind, which can be readily approximated with piecewise-constant finite elements. In this work, the spectral element method with GaussLobatto-Legendre (GLL) collocation points is employed to approximate this eigenvalue problem. Similarly to piecewise-constant finite elements, this approach is simple to implement and does not lead to generalized discrete eigenvalue problems (considering that the numerical integration is also performed with GLL points), with the additional advantage of providing high-order approximations of the eigenfunctions. Numerical experiments involving covariance functions in oneand two-dimensional domains illustrate the effectiveness of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Boundary Element Methods for Laplacian Eigenvalue Problems

The aim of the book is to provide an analysis of the boundary element method for the numerical solution of Laplacian eigenvalue problems. The representation of Laplacian eigenvalue problems in the form of boundary integral equations leads to nonlinear eigenvalue problems for related boundary integral operators. The solution of boundary element discretizations of such eigenvalue problems require...

متن کامل

Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem

In this paper, a rigorous convergence and error analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem is presented. The formulation of the eigenvalue problem in terms of a boundary integral equation yields a nonlinear boundary integral operator eigenvalue problem. This nonlinear eigenvalue problem and its Galerkin approximation are analyzed in the framewo...

متن کامل

Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind

Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...

متن کامل

Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error ‎analysis

In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....

متن کامل

Spectral element formulations on non-conforming grids: A comparative study of pointwise matching and integral projection methods

Pointwise matching (PM) and integral projection (IP) methods are two widely used techniques to extend the classical weak formulations to include non-conforming grids. We present spectral element formulations on polynomial (p-type) and geometric (h-type) non-conforming grids using both the PM (also known as the Constrained Approximation) and IP (also known as the Mortar Element) methods. We syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 257  شماره 

صفحات  -

تاریخ انتشار 2014